
Engineering Analysis with Boundary Elements 35 (2011) 1159–1167
Contents lists available at ScienceDirect
Engineering Analysis with Boundary Elements
0955-79

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/enganabound
B-spline approximation in boundary face method
for three-dimensional linear elasticity
Jinliang Gu, Jianming Zhang n, Xiaomin Sheng, Guanyao Li

State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
a r t i c l e i n f o

Article history:

Received 7 November 2010

Accepted 31 May 2011
Available online 1 July 2011

Keywords:

B-spline basis functions

Linear elasticity

Boundary face method

BIEs
97/$ - see front matter & 2011 Elsevier Ltd. A

016/j.enganabound.2011.05.013

espondence author: Tel.: þ86 731 8823061.

ail address: zhangjianm@gmail.com (J. Zhang
a b s t r a c t

In this paper, basis functions generated from B-spline or Non-Uniform Rational B-spline (NURBS), are

used for approximating the boundary variables to solve the 3D linear elasticity Boundary Integral

Equations (BIEs). The implementation is based on the BFM framework in which both boundary

integration and variable approximation are performed in the parametric spaces of the boundary

surfaces to keep the exact geometric information in the BIEs. In order to reduce the influence of tensor

product of B-spline and make the discretization of a body surface easier, the basis functions defined in

global intervals are translated into local form. B-spline fitting function built with the local basis

functions is converted into an interpolation type of function in which the nodal values of the boundary

variables are used for control points. Numerical tests for 3D linear elasticity problems show that the

BFM with B-spline basis functions outperforms that with the well-known Moving Least Square (MLS)

approximation.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the Finite Element Analysis (FEA), not only physical vari-
ables but also the geometric models are approximated using
elements. The geometric error of the model may result in serious
accuracy problem, which has attracted many researchers’ atten-
tion. Hughes et al. firstly introduced the conception of isogeo-
metric analysis [1] to deal with it. In Ref. [1], they have given a
detailed description to the concept using some numerical exam-
ples, such as thin shell and fluid mechanics analysis, which are
notoriously sensitive to the geometric imperfection in FEA. In
order to obtain acceptable numerical results, much time and
computational resource are consumed for the needless work of
further mesh generation to construct more accurate finite ele-
ment geometry. Actually, the problem also exists in the area of
Boundary Element Analysis (BEA). Recently, Zhang et al. [2]
proposed the Boundary Face Method (BFM), which uses the exact
geometry for analysis in the BIEs. It thoroughly overcomes the
shortcomings associated with approximate geometric models. In
the implementation of BFM, he makes use of the approximation
functions constructed by the Moving Least-squares (MLS)
method. Here in this paper, we present a new implementation
of the BFM, where the B-spline basis functions [3,4] instead of the
ll rights reserved.

).
MLS are used for approximating the boundary values. Our work is
largely stimulated by the conception of isogeometric analysis.

Isogeometric analysis is proposed to overcome some difficul-
ties that occur in classical design loop [4–7]. Within the concept,
basis functions generated from non-uniform rational B-spline
(NURBS) play a key role in offering exact geometry representa-
tion, simplification of design optimization and tighter integration
of analysis and CAD. Although NURBS is not the unique tool for
implementation of isogeometric analysis, it is the one in the most
widespread use so far. It may be owing to the two facts, one is
that NURBS is the standard approach for representation of free
form curves and sculptured surfaces in CAD, and can represent
elementary shapes such as sphere, cylinders, and torus exactly.
These make it possible for NURBS to express all of CAD models in
a uniform geometric representation. Another is that the basis
functions originated in the field of approximation theory and
inherently have some useful mathematic and geometric proper-
ties, such as the local support, nonnegative and partition of unit.
These are attractive properties with regard to numerical stability.
Actually, much work that focus on the B-spline basis functions
had been carried out in the realm of Finite Element Analysis (FEA)
before isogeometric analysis. For example, the basis functions
were used for solving partial differential equations [8] and
problems where continuity of higher derivatives is required
[9–11]. Interpolation function derived from the basis functions
used in the analysis of engineering problems shows that these can
result in a significant reduction of the number of degrees of
freedom [12].
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However, there are little available literatures that refer to the
application of B-spline basis functions in the BEA. Here, we
introduce them in the framework of the BFM. Coupling the BFM
with the B-spline basis functions, two obvious advantages are
absorbed into the new implementation comparing with tradi-
tional BEM. The first one is that the integrand quantities, such as
the coordinates of Gauss integration points, Jacobian and out
normal are calculated directly from exact geometry instead of
element approximation, an important property inherited from
BFM. The second one is that B-spline approximation represents
continuity between elements, a distinct property that must be
explicitly expressed in the BEA cases. Furthermore, a richer set of
refinement operations for the basis functions makes B-spline
more flexibly to be used for adaptive analysis in BFM. It should
be noted that the B-spline basis functions are only resorted to the
boundary of a geometric body in our method, making these
implemented much simpler than the FEM, and also the boundary
can be related directly to a CAD model. In our scheme, B-spline
basis functions defined in global interval are converted into local
form. Thus, construction of B-spline approximation functions will
be no longer fully restricted by the fashion of tensor product,
which requires that the control points must lie topologically in a
rectangular grid. This strategy largely reduces the load for
computation and saves a lot of computational resource. The
surface of a geometric model is discretized by a set of nodes.
Boundary values on these nodes, such as the displacement and
stress, are used as the control points for constructing B-spline
approximation functions. In that the original constructed bivari-
ate B-spline functions do not automatically satisfy the Kronecker
delta property, the fitting type of that is converted into the
interpolation type using the inverse transformation. The inter-
polation type is also called as B-spline approximation functions.
To further compute the boundary unknowns, e.g., the components
of stress in the BIEs, the partial derivatives of basis functions are
first expressed in the local forms, and then evaluated.

For comparison, The MLS [13] is also introduced in the same
framework used for approximation function. As a reliable method
for meshless analysis, the MLS is widely applied in data fitting and
interpolation. The construction MLS approximation function only
needs some points in the local support region, and reasonable
results associated with high accuracy usually are obtained in
numerical tests. B-spline basis functions have some properties
similar with MLS, such as the local support. Some researchers feel
that B-spline basis functions have the potential to impact in the
area of meshless methods [14]. The implementation of B-spline
approximation is much simpler than that of MLS. Moreover, in the
B-spline implementation, there is no need to choose the local
support size for a node, which is a troublesome issue in the MLS.
Comparison between the two methods by numerical examples
has fully demonstrated that B-spline basis functions are more
efficient than the MLS for solving potential problems.

This paper is organized as follows. In Section 2, there are
expressions of B-spline basis functions with degree two and three,
and bivariate B-spline and NURBS functions together with their
derivatives. In Section 3, B-spline as an approximate tool is used
in the discretization of BIEs. Numerical examples for 3D linear
elasticity problems are given in Section 4. Finally, we present the
conclusions for our work in Section 5.
2. Bivariate B-spline and NURBS functions

NURBS and B-spline functions are built from B-spline basis
functions [3,4]. In traditional way, these basis functions are
expressed in global form. Here, we transform the functions from
global form to local form to make them more flexible for
subsequent application. The B-spline basis functions in global
form are defined recursively for zero degree

Bi,kðxÞ ¼
1, xirxrxiþ1

0, otherwise
k¼ 0

(
ð1Þ

and for non-zero degrees

Bi,kðxÞ ¼
x�xi

xiþ k�xi
Bi,k�1ðxÞþ

xiþ kþ 1�x
xiþ kþ 1�xiþ 1

Biþ1,k�1ðxÞ, k40 ð2Þ

Assuming that 0/0¼0 and X¼[x1,x2,y,xnþkþ1], where X is
a knot vector; xi is the ith knot and n is the total number of
basis functions corresponding to the number of control points.
It should be noted that knot values presented in the knot
vector X, in this paper, are given by: x1¼x2¼y¼xkþ1¼0,
xnþ1¼xnþ2¼y¼xnþkþ1¼1, and xi¼ i/(n�k) for i¼kþ1,
kþ2,yn.

By Eq. (2), higher degrees of B-spline basis functions can be
deducted recursively. Here, we focus on the quadratic and cubic
functions.

Global form of quadratic B-spline basis functions can be
written as

Bi,2 ¼

ðx�xiÞ
2

ðxiþ 2�xiÞðxiþ 1�xiÞ
, xirxoxiþ1

ðx�xiÞðvÞ
ðxiþ 2�xiÞðxiþ 2�xiþ 1Þ

þ
ðxiþ 3�xÞðx�xiþ 1Þ

ðxiþ 3�xiþ 1Þðxiþ 2�xiþ 1Þ
, xiþ1rxoxiþ2

ðxiþ 3�xÞ2

ðxiþ 3�xiþ 1Þðxiþ 3�xiþ 2Þ
, xiþ2rxoxiþ3

8>>>><
>>>>:

ð3Þ

The above three piecewise polynomials can be transformed
into a local form, which is defined in the non-zero subinterval
[xi,xiþ1) and expressed as

Bð3Þi�2,2ðxÞ ¼
ðxiþ 1�xÞ2

ðxiþ 1�xi�1Þðxiþ 1�xiÞ

Bð2Þi�1,2ðxÞ ¼
ðx�xi�1Þðxiþ 1�xÞ
ðxiþ 1�xi�1Þðxiþ 1�xiÞ

þ
ðxiþ 2�xÞðx�xiÞ

ðxiþ 2�xiÞðxiþ 1�xiÞ

Bð1Þi,2 ðxÞ ¼
ðx�xiÞ

2

ðxiþ 2�xiÞðxiþ 1�xiÞ

8>>>><
>>>>:

ð4Þ

where BðlÞi�j,kðxÞ is the lth segment of the (i� j)th global basis
function in the [xi,xiþ1), k is the degree of basis functions, and
l¼1,2,y,kþ1.

Analogously, the cubic global form of B-spline basis function
also can be transformed into a local form, which is defined in the
non-zero interval [xi,xiþ1) and expressed as

Bð4Þi�3,3ðxÞ ¼
ðxiþ 1�xÞ3

ðxiþ 1�xi�2Þðxiþ 1�xi�1Þðxiþ 1�xiÞ

Bð3Þi�2,3ðxÞ ¼
ðxiþ 1�xÞ2ðx�xi�2Þ

ðxiþ 1�xi�1Þðxiþ 1�xi�2Þðxiþ 1�xiÞ

þ
ðxiþ 2�xÞðxiþ 1�xÞðx�xi�1Þ

ðxiþ 2�xi�1Þðxiþ 1�xi�1Þðxiþ 1�xiÞ

þ
ðxiþ 2�xÞ2ðx�xiÞ

ðxiþ 2�xi�1Þðxiþ 2�xiÞðxiþ 1�xiÞ

Bð2Þi�1,3ðxÞ ¼
ðxiþ 1�xÞðx�xi�1Þ

2

ðxiþ 2�xi�1Þðxiþ 1�xi�1Þðxiþ 1�xiÞ

þ
ðxiþ 2�xÞðx�xiÞðx�xi�1Þ

ðxiþ 2�xiÞðxiþ 2�xi�1Þðxiþ 1�xiÞ

þ
ðxiþ 3�xÞðx�xiÞ

2

ðxiþ 3�xiÞðxiþ 2�xiÞðxiþ 1�xiÞ

Bð1Þi,3 ðxÞ ¼
ðx�xiÞ

3

ðxiþ 3�xiÞðxiþ 2�xiÞðxiþ 1�xiÞ

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

The transformation for the B-spline basis functions can be
described intuitively by Fig. 1. We firstly list all of the cubic global
basis functions in the interval [0,1] in Fig. 1(a). In each subinter-
val, there are four different piecewise polynomials overlapped,
which are from four successive global basis functions. Then, we
can extract the superposed segments that exist in the same
subinterval, for example those in the [0.4, 0.6] depicted in the
Fig. 1(b). These piecewise polynomials actually are a local form
defined in a local subinterval.



Fig. 1. B-spline basis functions located in the subinterval [0.4, 0.6].

Fig. 2. Different nodes distribution patterns on the surface of a sphere for two

different definitions of B-spline basis functions: (a) Nodes distribution using the

global definition; (b) nodes distribution using the local definition.
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Using the local B-spline basis functions, we can easily obtain
the local form of bivariate B-spline function. It is defined by

Pðx,ZÞ ¼
Xn

i ¼ 1

Xm

j ¼ 1

Bi,kðxÞBj,lðZÞpij ¼
Xk

r ¼ 0

Xl

s ¼ 0

Nrsðx,ZÞprs ð6Þ

where Nrs(x,Z) is expressed as

Nrsðx,ZÞ ¼
Bðrþ1Þ

ir�r,k ðxÞB
ðsþ1Þ
js�s,l ðZÞ, xA xir ,xir þ1

� �
, ZA Zjs

,Zjsþ1

h �
0, otherwise

8<
: ð7Þ

pij(xij,yij,zij) are a set of control points. x and Z are parametric
coordinates with their values lying in the [x1,x2,y,xnþkþ1] and
[Z1,Z2,y,Zmþ lþ1], respectively. Where prs¼p(ir�r)(js�s), irA{kþ1,y,n}
and jsA{lþ1,y,m}. [xir,xirþ1) and [Zjs,Zjsþ1) are non-zero intervals.

Analogously, the local form of bivariate NURBS function also
can be obtained. It is defined by

Pðx,ZÞ ¼
Xn

i ¼ 1

Xm

j ¼ 1

Bi,kðxÞBj,lðZÞwijPn
i ¼ 1

Pm
j ¼ 1 Bi,kðxÞBj,lðZÞwij

pij ¼
Xk

r ¼ 0

Xl

s ¼ 0

Nrsðx,ZÞprs

ð8Þ

where the Nrs(x,Z) is expressed as

Nrsðx,ZÞ ¼
Bðrþ 1Þ

ir�r,k
ðxÞBðsþ 1Þ

js�s,l
ðZÞwðir�rÞðjs�sÞPk

r ¼ 0

Pl

s ¼ 0
Bðrþ 1Þ

ir�r,k
ðxÞBðsþ 1Þ

js�s,l
ðZÞwðir�rÞðjs�sÞ

, xA ½xir ,xir þ1Þ, ZA ½Zjs
,Zjsþ1Þ

0, otherwise

8><
>:

ð9Þ

when all of weights (i.e.,wij) are set to 1, Eq. (8) degenerates into a
local bivariate B-spline function.

Note that there are two attracting features introduced in the
local bivariate B-spline or NURBS functions. Firstly, to compute
the value of an arbitrary point it no longer requires to look for all
of control points and evaluate all of basis functions. Only those
relates to the point are needed. Secondly, because of the local
definition, there is no need to keep a fixed number in every row
and column to discretize a geometric body surface. These make
our implementation of B-spline approximation much more effi-
cient and easy. For example, in Fig. 2(a), a number of elements
inevitably concentrate on the area of the two poles of the sphere
to discretize. Actually, most of them have no contribution to the
accuracy of the numerical results. Their existence is merely
restricted by the tensor product form of the B-spline functions.
It is doubtless that these superfluous meshes will increase the
cost for computation. Whereas, in Fig. 2(b), the number of
elements located along circle direction can be modified in every
layer using the local form. Moreover, local refinement operations
can be implemented in each layer easily as that to the B-spline
curve [4].

Because Eqs. (7) and (9) do not satisfy the Kronecker delta
property, inverse transformation is required to guarantee that
B-spline approximation function interpolate the given boundary
values on a body surface. The detailed process for the inverse
transformation is omitted here, which can be found in the article
[1,14].

If the unknown boundary values have been solved from the
BIEs in the BFM framework, to obtain the components of the
boundary values, the derivatives of B-spline approximation func-
tion are also required. These actually can be resorted to the
derivation of the B-spline basis functions. There are two effective
approaches that can be used to obtain their derivatives. One
approach is using the derivation directly to the formula (2), so we
can obtain the general recursive formulas, which are expressed as

B0i,0ðxÞ ¼ 0,k¼ 0

B0i,kðxÞ ¼
1

xiþ k�xi
Bi,k�1ðxÞþ

x�xi

xiþ k�xi
B0i,k�1ðxÞ

� 1
xiþ kþ 1�xiþ 1

Biþ1,k�1ðxÞþ
xiþ kþ 1�x

xiþ kþ 1�xiþ 1
B0iþ1,k�1ðxÞ,kZ1

8>>><
>>>:

ð10Þ

Higher degree derivatives of B-spline basis functions can be
obtained using the above recursive formulas. However, these
derivatives are defined in a global interval, and called global
B-spline basis function derivatives.

Alternative approach is direct derivation of the local B-spline
basis functions. The derivatives of quadratic basis functions are
written as

B0ð3Þi�2,2ðxÞ ¼
2ðx�xiþ 1Þ

ðxiþ 1�xi�1Þðxiþ 1�xiÞ

B0ð2Þi�1,2ðxÞ ¼
ðxiþ 1�2xþxi�1Þ

ðxiþ 1�xi�1Þðxiþ 1�xiÞ
þ

ðxiþ 2�2xþxiÞ

ðxiþ 2�xiÞðxiþ 1�xiÞ

B0ð1Þi,2 ðxÞ ¼
2ðx�xiÞ

ðxiþ 2�xiÞðxiþ 1�xiÞ

8>>>><
>>>>:

ð11Þ

The above piecewise polynomials are defined in a non-zero
subinterval [xi,xiþ1), and called local B-spline basis function
derivatives. WhereB0ðlÞi�j,kðxÞ is the lth segment of the (i–j)th
derivatives of B-spline basis functions, k is the degree of the basis
functions and l¼1,2,y,kþ1. Local form of higher degree deriva-
tives also can be obtained in this manner, here we omit them.

Then, the partial derivative of local bivariate B-spline function
can be evaluated by the derivation of the local B-spline basis
functions. Its derivative with respect to x is given by

Pxðx,ZÞ ¼
Xn

i ¼ 1

Xm

j ¼ 1

B0i,kðxÞBj,lðZÞpij ¼
Xk

r ¼ 0

Xl

s ¼ 0

N0rsðx,ZÞprs ð12Þ



Fig. 3. The parametric mesh of an integral boundary face. (For interpretation of

the references to color in this figure, the reader is referred to the web version of

this article.)
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where the derivative of Nrs(x,Z) with respect to x is expressed as

N0rsðx,ZÞ ¼
B0ðrþ1Þ

ir�r,k ðxÞB
ðsþ1Þ
js�s,l ðZÞ, xA ½xir , xir þ1Þ, ZA ½Zjs

, Zjsþ1Þ

0, otherwise

(

ð13Þ

where prs¼p(ir�r)(js�s), [xir,xirþ1) and [Zjs,Zjsþ1) are non-zero
subintervals.

The partial derivative of bivariate NURBS function with respect
to x also can be obtained, which is given by

Pxðx,ZÞ ¼
@
Pm

i ¼ 1

Pn
j ¼ 1

Bi,kðxÞBj,lðZÞwijPm

i ¼ 1

Pn

j ¼ 1
Bi,kðxÞBj,lðZÞwij

pij

 !

@x

¼
Xk

r ¼ 0

Xl

s ¼ 0

N0rsðx,ZÞprs ð14Þ

where the derivative of Nrs(x,Z) with respect to x is given by

N0rsðx,ZÞ ¼

B0ðrþ 1Þ
ir�r,k
ðxÞBðsþ 1Þ

js�s,l
ðZÞwðir�rÞðjs�sÞ

Dðx,ZÞ �
Bðrþ 1Þ

ir�r,k
ðxÞBðsþ 1Þ

js�s,l
ðZÞwðir�rÞðjs�sÞDxðx,ZÞ
ðDðx,ZÞÞ2 ,

xA ½xir ,xir þ1Þ,ZA ½Zjs
,Zjsþ1Þ

0, otherwise

8>>><
>>>:

ð15Þ

Dðx,ZÞ ¼
Xk

r ¼ 0

Xl

s ¼ 0

Bðrþ1Þ
ir�r,k ðxÞB

ðsþ1Þ
js�s,l ðZÞwðir�rÞðjs�sÞ ð16Þ

Dxðx,ZÞ ¼
Xk

r ¼ 0

Xl

s ¼ 0

B0ðrþ1Þ
ir�r,k ðxÞB

ðsþ1Þ
js�s,l ðZÞwðir�rÞðjs�sÞ ð17Þ

The partial derivative of NURBS shape function with respect to
Z can also be obtained similarly. Its expression is symmetrical
with the above.
3. Discretization of the BIE for linear elasticity

The original linear elasticity in terms of partial differential
equations can be transformed into integral equations over the
boundary using Kelvin’s fundamental solutions and Betti’s reci-
procity theorem (for more details see [15]). The 3D regularized
displacement BIEs for linear elasticity can be written as

0¼

Z
G

tjðsÞUijðs,yÞdGðsÞ�
Z
G
ðujðsÞ�ujðyÞÞTijðs,yÞdGðsÞ ð18Þ

where uj(s) and tj(s) are the displacement and stress function on
the boundary G, respectively, which can be approximated by the
B-spline approximation functions in this paper. Where s is the
field point (integration point), and y is the source point (colloca-
tion point). The kernels Uij(s,y) and Tij(s,y) are Kelvin’s funda-
mental solutions, which are given as

Uijðs,yÞ ¼
1

16pGð1�mÞr
ð3�4mÞdijþr,ir,j

� �
ð19Þ

Tijðs,yÞ ¼
�1

8pð1�mÞr2

@r

@nðsÞ
ð1�2mÞdijþ3r,ir,j

� ��

�ð1�2mÞðr,injðsÞ�r,jniðsÞÞ

�
ð20Þ

In our schema, both the geometric faces to represent the
integral boundary G of a body and the B-spline function to
approximate the boundary values: uj(s) and tj(s), are expressed
in parametric form. Therefore, the discretization of Eq. (18) can be
performed in the parametric domain. Fig. 3 shows a parametric
mesh, which maps to a 3D mesh model of a boundary face. In it,
the red dots denote the locations of nodes; the purple mesh-grids
are integral background elements, which are one-to-one corre-
sponding to the nodes; the green rectangular is a parametric
domain of an integral boundary element, for example the labeled
domain of an integral element Gup; the black mesh-girds is
parametric subdivision according to the knot vectors of quadratic
beverage B-spline: Xx¼[0,0,0,1/3,2/3,1,1,1] and XZ¼[0,0,0,1/
2,1,1,1]; the virtual values, considered as the control points of
B-spline function, are located on the corner points of each black
grids, denoted by p̂ij; the given Dirichlet boundary condition is
imposed on the red dots, denoted by ~pij.

To make use of the mesh fashion described as the Fig. 3,
Eq. (18) can be discreted as

0¼
X
uv

Z
Guv

tjðsÞUijðs,yÞdGðsÞ�
X
uv

Z
Guv

ðujðsÞ�ujðyÞÞTijðs,yÞdGðsÞ ð21Þ

Subsequently, the bivariate B-spline approximation function
can also be constructed with the p̂ij as control points, which is
expressed as

Pðx,ZÞ ¼
Xk

r ¼ 0

Xl

s ¼ 0

Nrsðx,ZÞprs ð22Þ

where prs ¼ p̂ðir�rÞðjs�sÞ, irA{kþ1,y,n} and jsA{lþ1,y,m}. In Fig. 3,
n¼5, m¼4 and k¼ l¼2. Eq. (22) can also be expanded and then
expressed as another form, such as

Pðx,ZÞ ¼
Xk

r ¼ 0

Xl

s ¼ 0

Nrsðx,ZÞprs

¼
Xk

r ¼ 0

Nr0ðx,ZÞpr0þ
Xk

r ¼ 1

Nr1ðx,ZÞpr1þ . . .þ
Xk

r ¼ l

Nrlðx,ZÞprl

¼
X

i

Niðx,ZÞp̂i ð23Þ

where Ni(x,Z) and p̂i are the elements of two vectors corresponding to
Nrs(x,Z) and prs, respectively. In Fig. 3, Nr0(x,Z)¼Nr1(x,Z)¼y¼
Nrl(x,Z). If the number of elements in every rows is different from
each other, we have Nr0(x,Z)aNr1(x,Z)ayaNrl(x,Z). Nrs(x,Z) does
not satisfy the Kronecker delta property, but it is constricted to
interpolate the node values ~pij, i.e.,

~pj ¼ Pðxj,ZjÞ ¼
X

i

Niðxj,ZjÞp̂i ð24Þ

where ~pj is an arbitrary vector element corresponding to the node
values ~pij.

Substituting Eq. (24) into Eq. (23) with inverse transformation,
we have

Pðx,ZÞ ¼
X

i

Niðx,ZÞ
X

j

ð½N��1
ij
~pjÞ ¼

X
i

X
j

Niðx,ZÞ½N��1
ij
~pj

¼
X

j

~Njðx,ZÞ ~pj ð25Þ

where ~Njðx,ZÞ ¼
P

i

Niðx,ZÞ½N��1
ij .



Fig. 4. Two different mesh fashion of a sphere. (a) Discretization according to

B-spline local definition; (b) discretization according to B-spline global definition.
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The boundary displacement and stress approximation func-
tions can be respectively built, such as

ujðx,ZÞ ¼
X

i

~Niðx,ZÞ ~ujðxi,ZiÞ ð26Þ

tjðx,ZÞ ¼
X

i

~Niðx,ZÞ~t jðxi,ZiÞ ð27Þ

Making the following substitution,

Ið1Þuv ¼

Z
Guv

ðujðsÞ�ujðyÞÞTijðs,yÞdGðsÞ ð28Þ

Ið2Þuv ¼

Z
Guv

tjðsÞUijðs,yÞdGðsÞ ð29Þ

and substituting Eq. (26) and Eq. (27) into them, we have

Ið1Þuv ¼
X

l

Z 1

�1

Z 1

�1
ð ~Njðx,ZÞ� ~Njðx0,Z0ÞÞTijðx,ZÞJðx,ZÞdxdZ

 !
ð ~ujÞl ð30Þ

Ið2Þuv ¼
X

l

Z 1

�1

Z 1

�1

~Nrsðx,ZÞUijðs,yÞJðx,ZÞdxdZ
 !

ð~t jÞl ð31Þ

where ð ~ujÞl ¼ ~ujðxl,ZlÞ and ð~t jÞl ¼
~t jðxl,ZlÞ.

Then Eq. (21) can be described as a matrix form

H ~u�G~t ¼ 0 ð32Þ

Solving the above equation, we can obtain the unknown
displacement and stress on the boundary. To further compute the
boundary stress components, the following equations are used:

sijnj ¼ ti

@ui

@xj

@xj

@xk
¼

@ui

@xk
ði,j¼ 1,2,3 k¼ 1,2Þ

sij ¼ Gðui,jþuj,iÞþlul,ldij

8>><
>>: ð33Þ

This relationship can be founded from geometric information
of a body and linear elasticity theory.

If the boundary values have been solved from Eq. (32), the
solution of domain stress components needs the following
domain stress integral equation, which is written as

sijðyÞ ¼

Z
G

tkðsÞUijkðs,yÞdGðsÞ�
Z
G

ukðsÞTijkðs,yÞdGðsÞ ð34Þ

with the fundamental solution described as

Uijk ¼
1

8pð1�mÞr2
ð1�2mÞðdikr,jþdjkr,i�r,kdijÞþ3r,ir,jr,k

� �
ð35Þ

Tijk ¼
G

4pð1�mÞr3
3

@r

@nðsÞ
ð1�2mÞdijr,kþmðdikr,jþdjkr,iÞ�5r,ir,jr,k

� ��
�ð1�4mÞdijnkðsÞþð1�2mÞ½diknjðsÞþdjkniðsÞþ3r,ir,jnkðsÞ�

þ3mðr,jr,kniðsÞþr,ir,knjðsÞÞ

�
ð36Þ

4. Numerical examples

Two 3D exact geometric models for linear elasticity problems
are employed in the BFM to illustrate the efficiency and accuracy
of B-spline approximation. As a tool to discretize the surfaces of
the geometric bodies, nodes described here have two different
meanings. One is that these nodes are only a series of discrete
points, which locate in the inner of rectangular grids. So B-spline
approximation functions can be constructed by the prescribed
boundary values on these nodes. Another is that these nodes are a
series of background elements. To solve the BIEs, information for
Gauss quadrature can be obtained from these nodes, which have
one-to-one correspondence to the background elements. These
background elements are expressed as the rectangular grids due
to the form of tensor product of the bivariate B-spline functions.
Comparison between the B-spline approximation and the MLS
approximation is performed in the same framework of BFM. The
boundary geometric information used for solving the BIEs, such as
the Jacobian, the out normal and the distance between two
points, can be exactly obtained from the exact geometry of a
body based on the conception of BFM.

In order to estimate numerical error and convergence, a
‘global’ L2 norm error, normalized by 9vmax9 is defined by [16]

e¼
1

9v9max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1

ðvðeÞi �vðnÞi Þ
2

vuut ð37Þ

where 9vmax9 is the maximum value of sample points, the super-
scripts (e) and (n) refer to the exact and numerical solutions,
respectively.

4.1. The linear elasticity problem

To assess the accuracy of the current approximation method,
we use the following two analytical fields:

(i) Linear solution:

ux ¼ xþ0:5yþ0:5z

uy ¼ 0:5xþyþ0:5z

uz ¼ 0:5xþ0:5yþz ð38Þ

(ii) Quadratic solution:

ux ¼�2x2þ3y2þ3z2

uy ¼ 3x2�2y2þ3z2

uz ¼ 3x2þ3y2�2z2 ð39Þ

In all cases, the 3D regularized displacement BIEs for linear
elasticity is solved, combined with reasonable prescribed bound-
ary conditions corresponding to the above analytical solutions.

4.1.1. Linear elasticity problem for a sphere

A sphere is firstly used for discussion, with radius 2 unit and
center at the origin. The usual spherical polar coordinates y and j
are used. The linear and quadratic analytical fields (Eqs. (38) and
(39)) are used as exact solutions. Displacement boundary condi-
tion is employed in the discussion. Comparison among linear,
quadratic and cubic B-spline approximation, as well as MLS will
be carried out on the sphere. Displacement boundary conditions
corresponding to the exact solutions (Eqs. (38) and (39)) are
imposed on the surface of the sphere. Two mesh models of the
sphere are described in the Fig. 3. The left one and the right one in
Fig. 4 are meshed according to the B-spline local definition and
global definition, respectively.

Two kinds of comparison will be performed on the two models
to illustrate the B-spline approximation. In the first one, the two



Table 2
The L2 errors of the surface components of displacement and stress obtained from

quadratic MLS and B-spline approximation (M: MLS, B2: quadratic B-spline),

which are signed with percentage (%).

Number

of nodes

uxx uyy uzz Sxx Syy Szz Time (s)

48 M 4.594 5.502 3.007 1.935 2.023 2.746 24

B2 1.454 1.588 1.752 1.512 1.434 1.694 10

80 M 1.737 1.938 0.847 0.8897 0.9412 1.267 75

B2 0.5055 0.1008 0.4729 0.5218 0.4817 0.5812 41

124 M 0.8548 0.9225 0.3046 0.4582 0.4935 0.802 228

B2 0.2109 0.07857 0.2042 0.2158 0.2148 0.2591 94

283 M 0.2367 0.2555 0.04826 0.1373 0.1535 0.3691 1825

B2 0.03675 0.02347 0.04427 0.05364 0.06814 0.07372 747
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Fig. 5. Relative error of stress component Sxx and convergence of the four

methods.
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types of sphere mesh models are adopted to testify their compu-
tational efficiency. Mesh displayed in Fig. 4(b) indicates that the
elements (also called nodes) are located along woofs, the number
of elements can be modified according to the woofs length. So the
element size in the full surface can be modified near to a uniform
size. Whereas, mesh displayed in Fig. 4(a) indicates that the
number of nodes along each woof keeps a fixed quantity accord-
ing to B-spline basis global definition. So elements are dense in
the areas of two poles of the sphere. In the two models, we
distribute the same number of elements (40 elements) on the two
sides of equators. 200 nodes are used for subdividing the full
surface in Fig. 4(a), but only 118 nodes are used in Fig. 4(b). The L2

errors of displacement and stress components evaluated by Eq.
(37) and time required for numerical results for quadratic
analytical fields are described in Table 1. The quadratic and cubic
B-splines are employed to approximate the boundary values of
displacement and stress. Each group of the data in Table 1(a) and
(b) shows that less nodes are required for computation, but more
accurate results can be obtained with the local B-spline, com-
pared with the global B-spline. Furthermore, the less time cost is
need for obtain high accuracy numerical result. That is because
not only the less nodes are used for analysis, but also much more
compute time spent for estimation of the singular integral of BIEs
is saved due to the local B-spline definition effectively avoid the
nodes largely concentrate in two poles of the sphere where many
singular integrals need to be computed.

The second comparison is performed between the MLS and the
B-spline in the same BFM framework. In this case, the displace-
ment boundary condition corresponding to the linear and quad-
ratic analytical field (Eqs. (38) and (39)) are imposed on the
surface of the sphere. The linear, quadratic and cubic local
B-spline, as well as the MLS are used for approximating the
surface components of displacement u and stress t. The L2 errors
in terms of these boundary values approximated by quadratic
B-spline and MLS are shown in Table 2, which are obtained from
four sets of nodes: (a) 48 nodes; (b) 80 nodes; (c) 124 nodes;
(d) 283 nodes, associated with quadratic displacement boundary
condition corresponding to quadratic analytical field Eq. (39).
According to the Table 2, we can clearly see that the quadratic
B-spline outperforms than the quadratic MLS, not only in exact-
ness but also in computational time.

In Figs. 5–7, six sets of nodes: (a) 22 nodes; (b) 48 nodes; (c) 64
nodes; (d) 80 nodes; (e) 124 nodes; (f) 283 nodes, associated with
quadratic displacement boundary condition corresponding to
Table 1
The L2 errors of components of displacement and stress on the sphere surface obtained

signed with percentage (%).

Number of nodes ux uy uz

(a) Quadratic B-spline approximation for quadratic displacement boundary condition

L 64 0.897 0.3483 0.8665

G 72 1.696 0.5649 1.752

L 80 0.5055 0.1008 0.4729

G 98 0.8009 0.2693 0.8665

L 101 0.3054 0.04275 0.2994

G 128 0.4518 0.1433 0.4729

L 124 0.2109 0.07857 0.2042

G 162 0.2905 0.08319 0.2994

(b) Cubic B-spline approximation for quadratic displacement boundary condition

L 64 1.22 1.443 1.356

G 72 2.88 0.3547 2.886

L 80 0.2982 0.3287 0.257

G 98 1.359 0.1504 1.356

L 101 0.1213 0.06067 0.1225

G 128 0.271 0.07346 0.257

L 124 0.08022 0.02466 0.1007

G 162 0.13 0.03994 0.1225
quadratic analytical field Eq. (39) are used to obtain the numerical
results. The boundary stress components are approximated by the
four methods: the linear, quadratic and cubic B-spline, and the
MLS. From the three figures, we can find that quadratic and cubic
local B-splines have higher rates of convergence over MLS.
Although the linear B-spline is less efficient than MLS in this
from two different kinds of meshes (L: local B-spline, G: global B-spline), which are

Sx Sy Sz Time (s)

0.8063 0.7795 0.9657 20

1.366 1.305 1.569 128

0.5281 0.4817 0.5812 41

0.8056 0.7702 1.006 152

0.3045 0.3034 0.3713 56

0.5152 0.4984 0.6092 296

0.2158 0.2148 0.2591 94

0.3147 0.3068 0.3827 559

0.6248 0.6403 0.9339 22

2.198 2.063 2.24 97

0.1789 0.1653 0.2082 50

0.8843 0.8328 0.9693 156

0.1513 0.1654 0.1518 122

0.1571 0.1485 0.1667 359

0.08135 0.09845 0.08793 194

0.1761 0.1672 0.2007 564
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example, B-spline has a flexible selection of high degree, which
makes the B-spline more freely and efficiently used in approx-
imation problems than the MLS.
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Fig. 6. Relative error of stress component Syy and convergence of the four methods.

0

1E-3

0.01

R
el

at
iv

e 
er

ro
r o

f S
zz

 o
n 

th
e 

no
de

s

Number of nodes

Linear B-spline
Quadratic B-spline
cubic B-spline
MLS

50 100 150 200 250 300

Fig. 7. Relative error of stress component Szz and convergence of the four methods.

Fig. 8. An elbow pipe
4.1.2. Linear elastic problem for an elbow pipe

Here, we use a more complicated body to determinate the
convergence rates of B-spline approximation in the BFM. Its
geometry and main size are described in Fig. 8. The body is
closed by six different torus surface parts and four cylinder
surfaces. Quadratic displacement boundary condition correspond-
ing to the exact solution (Eq. (39)) is imposed on all of surfaces.
There are three sets of nodes: (a) 462 nodes; (b) 652 nodes;
(c) 856 nodes, to be used for discretizing this body surface. These
mesh models are presented in Fig. 9. B-spline approximation
functions for each face can be constructed by a free selection of
degrees in two directions respectively. For example the No. 1
torus surface in Fig. 8, we use cubic basis function for approxima-
tion in the circumference direction, whereas use linear or quad-
ratic basis function in another direction.

In order to determine the convergence rates, the stress
components for three surfaces are considered, which are respec-
tively labeled by three different colored dashes in the Fig. 8(b).
The No. 1 surface is of small size when compared with the whole
pipe, and especially, the two ends of the pipe are thin. To perform
the boundary integral on it, there are many nearly singular
integrals needed for treatment, which may deteriorate the final
numerical results. But Fig. 10 shows that the numerical results
restricted to the quadratic boundary conditions on the No. 1
slightness surface are convergent to the exact solutions following
the increment of nodes, even if the results initially obtained from
the 462 nodes fluctuate widely. Figs. 11 and 12 indicate that the
numerical results obtained from the three sets of nodes are in
good agreement with the quadratic stress exact solutions.
Comparing with the Fig. 10, we can find the two surface size is
bigger than that of the No. 1 surface. So this example fully proves
that B-spline has well stability to approximate boundary values in
BIEs, not only for a large size surface, but also for a small feature.
5. Conclusions

The bivariate B-spline function as an efficient approximation
method has been successfully implemented in the BFM for solving
the linear elasticity problem. The new implementation inherits
the advantages of the BFM. For example, the geometric model of a
body is directly used for analysis, thus no geometric error
introduced. To alleviate the difficulties in meshing associated
with the tensor product form of the B-spline bivariate functions,
the traditional global form of B-spline basis functions are
converted into local form. As the B-spline bivariate functions
and its main size.



Fig. 9. Three different mesh models for the elbow pipe.
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Fig. 10. The stress component Sxx along circle direction on the No. 1 surface.

0.0

-25

-20

-15

-10

-5

0

V
al

ue
s 

of
 S

tre
ss

 c
om

po
ne

nt
 S

xy
 

Parameter Coordinates

Exact solution
462 nodes
652 nodes
856 nodes

0.2 0.4 0.6 0.8 1.0

Fig. 11. The Stress component Sxy along circle direction on the No. 2 surface.
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Fig. 12. The Stress component Syz along circle direction on the No. 3 surface.
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are fitting type functions, i.e. they lack the Kronecker delta
property, an inverse transformation is performed to convert them
into ones of interpolation type.

Numerical results have demonstrated that our implementation
is feasible for solution of BIEs. As a comparison, the MLS
approximation, which is widely applied in meshless analysis, is
also implemented into the same framework of BFM. Comparisons
between the B-spline bivariate function and the MLS approxima-
tion regarding to accuracy, stability and efficiency have been
performed using examples of linear elasticity problems. Results
show that our method performs better in all mentioned aspects.

Despite the advantages, however, the bivariate B-spline func-
tions suffer from the defection of tensor product, which limits
their application in engineering. T-spline is a new promising
method [17], which is also based on the B-spline basis functions.
Use of T-spline for analysis instead of B-spline is an ongoing work.

To deal with the large-scale computations for complicated geo-
metric bodies, the Fast Multipole Method (FMM) [18–20] can be
applied to reduce the computation expense. And this is also planned.
Acknowledgments

This work was supported in part by National Science Founda-
tion of China under grant number 10972074 and in part by
National 973 Project of China under grant number 2010CB328005.

References

[1] Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Computer Methods
in Applied Mechanics and Engineering 2005;194:4135–95.



J. Gu et al. / Engineering Analysis with Boundary Elements 35 (2011) 1159–1167 1167
[2] Zhang JM, Qin XY, Han X, Li. GY. A boundary face method for potential
problems in three dimensions. International Journal of Numerical Methods in
Engineering 2009;80:320–37.

[3] de Boor Carl. On calculating with B-spline. Journal of Approximation Theory
1972;6:50–62.

[4] Ramshaw Lyle. Blossoms are polar forms. Computer Aided Geometric Design
1989;6:323–58.

[5] Cottrell J, Hughes T, Reali A. Studies of refinement and continuity in
isogeometric analysis. Computer Methods in Applied Mechanics and Engi-
neering 2007;196:4160–83.

[6] Bazilevs Y, de Veiga LB, Cottrell J, Hughes T, Sangalli G. Isogeometric analysis:
approximation, stability and error estimates for refined meshes. Mathema-
tical Models and Methods in Applied Sciences 2006;6:1031–90.

[7] Wall WA, Frenzel MA, Cyron C. Isogeometric structural shape optimization.
Computer Methods in Applied Mechanics and Engineering. 2008;197:2976–88.

[8] Prenter PM. Splines and Variational Methods. New York: Wiley; 1975.
[9] Hollig K. Finite Element Methods with B-Splines, Frontiers in Applied

Mathematics, vol. 26. Philadelphia: SIAM; 2003.
[10] Sabin MA. Spline Finite Elements, PHd Dissertation. U.K: Cambridge Uni-

versity; 1997.
[11] Kagan P, Fischer A, Bar-Yoseph PZ. New B-spline finite element approach for

geometrical design and mechanical analysis. International Journal for
Numerical Methods in Engineering 1998;41:435–58.
[12] Kagan P, Fischer A. Integrated mechanically based CAE system using B-spline
finite elements. Computer Aided Design 2000;32:539–52.

[13] Zhang JM, Yao ZH. Analysis of 2-D thin structures by the meshless regular

hybrid boundary node method. Acta Mechanica Sinica 2002;15:36–44.
[14] Shaw Amit, Roy D. NURBS-based parametric mesh-free methods. Interna-

tional Journal of Numerical Methods in Engineering 2008;197:1541–67.
[15] Brebbia CA, Telles JCF, Wrobel LC. Boundary Element Techniques-Theory and

Applications in Engineering. Berlin: Springer; 1984.
[16] Zhang Jianming, Tanaka Masataka, Matsumoto Toshiro. Meshless analysis of

potential problems in three dimensions with the hybrid boundary node method.
International Journal of Numerical Methods in Engineering 2004:1147–66.

[17] Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T-NURCCSs. ACM
Transactions on Graphics 2003;22:477–84.

[18] Zhang JM, Tanaka M, Endo M. The hybrid boundary node method accelerated
by fast multipole method for 3D potential problems. International Journal for
Numerical Methods in Engineering 2005;63:660–80.

[19] Zhang JM, Tanaka M. Fast HdBNM for large-scale thermal analysis of CNT-
reinforced composites. Computational Mechanics 2008;41:777–87.

[20] Zhang JM, Tanaka M. Adaptive spatial decomposition in fast multipole
method. Journal of Computational Physics 2007;226:17–28.


	B-spline approximation in boundary face method for three-dimensional linear elasticity
	Introduction
	Bivariate B-spline and NURBS functions
	Discretization of the BIE for linear elasticity
	Numerical examples
	The linear elasticity problem
	Linear elasticity problem for a sphere
	Linear elastic problem for an elbow pipe


	Conclusions
	Acknowledgments
	References




